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Abstract
We are testing a modified bootstrap technique for

importance sampled data from SimSET (a simulation system
for emission tomography). The bootstrap allows us to
simultaneously produce multiple raw data sets from a single
simulation while at the same time reducing the weight
variation caused by importance sampling. This combination
may greatly reduce the CPU time required to produce the
multiple image realizations needed for ROC studies. Initial
testing indicates that the mean and variance of medium and
high count bins in the raw data and high-activity regions of
interest (ROIs) are reproduced relatively accurately.

I.  INTRODUCTION

We are developing a modified bootstrap technique to apply
to emission tomography simulations using SimSET [1].

Despite the use of importance sampling (IS) [2] and the
ever-increasing speed of computers, many problems remain
unwieldy or intractable to study using simulation. One such
problem is the generation of multiple realizations of the same
image for ROC studies. These studies often require hundreds
of image realizations from each of several different activity
distributions. Such data sets can take months or even years of
CPU time to generate.

The problem of generating multiple samples from a
probability distribution when only one data set is available, or
when multiple data sets are difficult to produce, is often
attacked using the bootstrap technique [3, 4]. In this
technique, the available data set is used as an estimate of the
underlying distribution. New data sets are generated by
sampling data points from the original data with replacement.

We have attempted to modify the bootstrap to ameliorate a
problem inherent to the use of importance sampled data:
because the events have different weights, the variance has
different properties than that of the equivalent analog (non-
importance sampled) distribution. The idea underlying our
modified bootstrap is that by sampling events with frequency
proportional to their weight, we can reduce or eliminate the
variation in weight. One can imagine several ways of realizing
this goal: the one we chose is described below in Section II.d.

Figure 1: The simulated phantom.

We have tested this technique by generating 99 positron
emission tomography (PET) data sets and comparing them to
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99 data sets from an analog simulation, both in data space and
image space. The results raise as many questions as they
answer, but give substantial cause for optimism.

II. METHODS

A. Simulation Setup
We performed 99 analog simulations of 4 million decays

each. We simulated an elliptical cylinder of water, 40 cm
major axis, 10 cm minor axis, and 3 cm axially. A 6 cm
diameter circular cylinder of activity was centered on the major
axis, 10 cm from the center of the phantom (Figure 1). No
collimators or detectors were simulated; instead, all photons
reaching a target cylinder with energy greater than 400 keV
were considered detected. The target cylinder was centered at
the same point as the elliptical cylinder, with 90 cm diameter
and 3 cm axial extent.

Coincident events were binned into a 64 by 64 distance-
angle array, with the distance bins spanning -20 cm to 20 cm.

B. Bootstrap Implementation/Importance Sampled
Simulation

We created 99 data sets using a modified bootstrap
technique and the data from one simulation. We used the same
simulation setup as described above, except with SimSET’s
stratification, forced detection, and forced non-absorption
features turned on.

Often when bootstrap sampling is applied, it is used to
create multiple realizations with N detected event from a
single simulation or scan with N detected events [5]. We
thought that the resulting overlap in the detected events from
data set to data set might cause significant correlation between
artifacts in the images reconstructed from the resulting data
sets. For this reason, we chose to simulate 664,230
decays—using a short training run, we determined this would
produce an equivalent number of detected events to ten 4-
million decay analog runs.

Our bootstrap technique sampled from this simulation on-
the-fly. Each time a detected event was produced, we sampled
a random number, R, for each of the 99 data sets from the
Poisson distribution with parameter

p = min 0.1
wevent
wmean

,0.5
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where wevent is the weight of the current event, wmean is the
average event weight, and the factor 0.1 is to compensate for
the fact that we were simulating ten times as many decays as
needed for one data set. The maximum value of 0.5 is set to
keep the Poisson parameter small, so that a event does not
appear in too many of the data sets. When the sampled R is 0,
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the event is not binned in that data set. Otherwise the event is
binned with its weight adjusted to

woutput =
R*w event

p
(2)

In a more typical bootstrap, woutput would not include the
factor R; instead, R events would be generated. We chose to
create a single event to simplify the modifications needed to
the SimSET software. In the long run, however, we believe it
may be better to generate R separate events.

C. Image Reconstruction
We reconstructed images from the analog and bootstrap

simulation data sets using filtered backprojection with a
Hamming window, cutoff frequency 0.6.

D. Statistical Analysis in Data Space
The 99 data sets from the analog simulations were

compared to the 99 data sets from the bootstrap simulation
using the Student t-test and the f-test [6].  We applied these
tests bin-by-bin, and grouped the results according to the
mean number of counts in the analog simulation data sets.

E. Region-of-Interest Analysis in Image Space
Two square ROIs, 5 by 5 pixels (3.1 cm by 3.1 cm) were

placed on each image. The first ROI was centered in the
cylinder of activity, the other in a zero-activity area on the
other side of the phantom. We computed the sample mean and
variance for the analog images and the bootstrapped images.
We then computed Student t-test and f-test statistics.

III.  RESULTS

A. Simulation Run Statistics
Some simulation efficiency statistics are given in Table 1.

The bootstrap/IS method significantly reduced the cost per
realization—though we must note that the situation we
simulated is one where the IS can help a great deal, something
that is not always true.

Table 1
Simulation Efficiency Statistics

average analog
simulation

average bootstrap
realization

CPU time (seconds) 1320 7.8

Total detected counts 19,905 22,385

Total detected weight 938,647 916,355

Total detected weight-
squared

44.26 million 39.62 million

Quality factor (QF) 1.0 0.95

counts *QF
CPU_time

15.1 2752

B. Data Space Analysis
The results of the Student t-test and the f-test applied bin-

by-bin are shown in Tables 2 and 3. The last four columns
show the percentage of analog-bootstrap bin pairs with p >
0.5, 0.05, 0.01 and ≤ 0.01—the last three being of interest as
common levels for the rejection of the null hypothesis. No
results are shown for 1223 bins for which one data sets
(analog and/or bootstrap) had no counts in any realization.
(The analog data sets had 659 such bins, bootstrap 1191.) The
rest of the results are sorted by the mean number of counts in
the analog data bin. The line for average counts between 0 and
1 should, perhaps, have been omitted, as many of these bins
had a total, over all the realization, of 10 or less events. We
usually wouldn’t apply these tests to Poisson data with less
than 20-30 counts.

However, even in the high count bins, we are seeing
significantly different means and variances for a high number
of bins. The distributions are close, as shown in the fact that
there are also many p-values greater than 0.5 and 0.05.
However, overall the distribution of data is clearly different for
the analog and bootstrap realizations.

Table 2
Bin-by-Bin T-test Comparison

mean counts # of
bins

% p >
0.5

% p >
0.05

% p >
0.01

% p ≤
0.01

0 1223 - - - -

0 to 1 2209 16.3 48.2 60.8 39.3

1 to 5 97 35.1 69.1 81.4 18.6

5 to 10 67 37.3 71.6 80.6 19.4

10 to 30 185 22.2 58.9 77.3 22.7

30 to 50 183 20.8 54.6 70.0 30.1

50 to 70 132 15.2 49.2 59.9 40.2

Table 3
Bin-by-Bin F-test Comparison

mean counts # of
bins

% p >
0.5

% p >
0.05

% p >
0.01

% p ≤
0.01

0 1223 - - - -

0 to 1 2209 8.1 25.3 34.2 65.8

1 to 5 97 23.7 70.1 82.5 17.5

5 to 10 67 26.9 85.1 95.5 4.5

10 to 30 185 37.8 79.5 90.3 9.7

30 to 50 183 26.2 78.7 90.2 9.9

50 to 70 132 30.3 81.1 95.5 4.6

C. Image Space Analysis
Table 4 shows the sample mean and variance for the two

image ROIs. For both ROIs, the means are very close. The
sample variance make clear, however, that this was a matter of
luck. The variances for the ROI with activity have an f-test p-



value of 0.29, so they are also reasonably close. However, the
background variances are significantly different (p = 0.0004).

Table 4
ROI Mean and Variance

Analog
mean

Analog
variance

Bootstrap
mean

Bootstrap
variance

Active ROI 707.2 150.2 707.8 121.3

Background ROI 2.18 73.39 0.19 35.6

IV.  DISCUSSION

This is preliminary work, and as such raises far more
questions than it answers. The modified bootstrap technique
helps to speed up the generation of multiple realizations
tremendously, but we have not shown that these realizations
are close enough to truly independent realizations to allow the
technique to be used.

However, there are a number of ways we can address the
problems. A better way to assign the number of decays for the
bootstrap simulation would help—our use of a short training
run for that purpose will have propagated the noise from the
short run through our entire data set. There are other ways to
implement the bootstrap algorithm that might help. And,
given the tremendous speed-up we achieved, we could
experiment with generating more events.

We do not really expect the bootstrap to perfectly
reproduce the bin-by-bin statistics shown above. As seen
above the performance on image statistics can be very good
even in situations where the underlying data sets do not
perfectly represent the true distributions. We plan more tests
for this technique in image space. The ultimate test will be the
performance of the bootstrap on ROC data sets.

Finally, we note that SimSET is available free of charge
for non-commercial use. However, the bootstrap algorithm is
not in the distributed package, and will not be until we have
carried this investigation considerably further. Contact
simset@u.washington.edu for more information.
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